PREDICT THE FUTURE? FOLLOW THE MONEY

Evolution.jpg

Can we predict the future by studying the past?

Some insist that history is bound to repeat itself (especially if we don’t learn from it). It also teaches us a lot about human nature, which we can use to extrapolate future behaviour. But sometimes developments come along that really shake things up and send us off on a whole new tangent.

One of my summer reads, a book called Sapiens by Yuval Noah Harari, is a real eye-opener. It’s a hugely ambitious history of the human race from our beginning to the present day, but not a list of dates and facts. Instead it seeks to explain why homo sapiens rose to prominence instead of other human species like Neanderthals, and how we got to where we are from our humble origins. It especially charts the most significant changes in our history, and analyses their impact, from the births of spoken and written language to the rise of modern thought, the Agricultural Revolution, Scientific Revolution, Industrial Revolution, and more.

 
 

One of Harari’s key assertions that had never occurred to me is that, before the rise of modern science in the 1500’s, most people on the planet were encouraged to believe that all significant knowledge was contained in the foundational books of the main religions and the teachings of the ancients. What wasn’t revealed in those just wasn’t important to know. The findings of Copernicus, Galileo, Newton and many others changed that, especially when they led to improvements in technology. It gradually became accepted that learning about how the universe works wasn’t just worthwhile, it could make life better for humans. Similarly, most people had believed that the human condition was stagnant, or even declining, including the distribution of wealth. The size of the world’s “pie” didn’t change, so for you to get a bigger slice you had to take it from someone else. Then came the “discovery” of the American continents and many other previously unknown lands offering huge wealth in conjunction with still more technological improvements, and suddenly there appeared the concept of progress: that the world pie could actually grow and benefit everyone (except the native people of those places, of course).

Enter capitalism. After all, scientific research and exploration are expensive. Those with the capital to pay for it want to see concrete (ie. profitable) benefits. That will continue to be true in centuries to come. Which means that science will advance in areas where there’s money to be made.

We’re already seeing the space travel business pass from the hands of governments to private industry because companies like SpaceX can profit by providing space delivery services not only to NASA but also to everyone who wants to put a satellite, or anything else, into orbit. Since many chemical processes can be easier to carry out under zero gravity and with extremes of heat or cold (or are much safer accomplished far from human populations!), expect to see laboratories and chemical factories in space. The availability of abundant raw solar energy outside the atmosphere is another plus (and a potential industry of its own once it can be safely beamed to receivers on Earth). Future mining of the Moon, the asteroids, and the moons of other planets is something we’ve long assumed will happen. Entrepreneurs eager to carry out such developments are only waiting for the cost of space launches to drop below a certain level, to make the ventures profitable.

Space tourism is a fairly safe bet as a coming attraction, but also expect orbital or Moon-based health spas and retirement homes for those to whom gravity, weather, or unfiltered air have become undesirable. For those of us with insufficient incomes for an actual presence in space, there will at least be a lot of virtual experiences available, driving moon buggies, skating across planet-size ice rinks, or surfing Saturn’s rings. In fact, painstakingly accurate virtual experiences of every kind imaginable will be a growth industry for many decades to come.

The transportation industry has hit a speed bump with Covid-19 (and future pandemics) making it unwise to pack large numbers of people together, but new solutions will be found, and soon the race toward ever faster and pervasive travel will resume. Maybe it’ll be with individual pods linked like train cars travelling in vacuum tunnels. Or drones big enough to carry a human. Or maybe I’m wrong, and only goods will be transported over long distances while humans become accustomed to increasingly realistic virtual travel and social interactions.

Scientific progress isn’t only about space or speed, either. Genetic engineering has already made vast amounts of money for drug and chemical companies, and will only get bigger. Progress in medical science affects everyone, curing diseases, chronic illnesses, and hereditary health problems until life expectancy soars toward immortality. And there’s no question that drug and medical care can be very profitable (note that it will not be profitable for anyone to discover a permanent cure for anything, so don’t expect it. Profit lies in making customers pay for ongoing treatments!) And, like it or not, genetic modification will extend to humans, first for medical reasons but eventually for fashion and entertainment, because there is money to be made. Giant corporations will keep lobbying governments to relax rules against gene editing, cloning, transformative surgeries and the like, while aggressively persuading the masses that it’s what they want. From picking the characteristics of your children, to enhancing your physique with artificial muscle or mechanical accessories, to making you look (and smell) like your favourite celebrity or animal, it’s only a matter of time.

There’s another commodity side to genetic engineering: creating made-to-order creatures. Scientists have already been working to recreate extinct species like woolly mammoths, but you just know that mini-dinosaurs would be big sellers, and the new creations won’t be confined to real species. Chimeras out of legend, or pure fantasy, will be brought to life. Imagine the smile on your daughter’s face when you give her a real unicorn for her birthday!

(As for how we’ll treat the life forms we create, or any alien forms we might encounter, just remember the millions of Africans once condemned to lives of slavery, the billions of animals treated like mere raw materials by agribusinesses today, and the wild species we’re driving to extinction. Everything will depend on which is more profitable: cruelty or kindness. Humankind has a long history of turning a blind eye to the plight of others if that suffering benefits us.)

Don’t forget that profit can also include political advantage and power. The exploitation of the Americas and elsewhere led to European empires that soon surpassed the largest economies of their time, in India and China. It’s also important to remember that much of the wealth of recent centuries came from the discovery of wholly new materials like aluminum and plastics, and new technologies like electrical generation and global communication. The parade of new discoveries will continue as humankind reaches outward and more money is pumped into the science pipeline. Money will be made from things we don’t even know exist yet.

All in all, science fiction writers will be well-advised to plan out our imaginary worlds and empires based on a clearly established framework of trade goods and profit margins. Science depends on investment, which depends on capitalism, which depends on consumers who buy goods and services. (Although it’s also true that, where there’s no existing market, advertising will create one!)

In closing, I’m compelled to point out one more thing to the capitalists reading this:

Saving the planet can be a money maker too! Think of it as “preserving your capital”, “protecting your market”, or just “ensuring future growth”.

Right now, that’s the most important investment of all.

ADAPTING HUMANS TO OTHER PLANETS, PART TWO

In my last post I speculated about how we might adapt ourselves to the environments of other planets rather than trying to terraform them or forever be confined to enclosed settlements and space suits. I used Mars as an example of an “earthlike” planet we might consider colonizing.

A Mars-type planet would be an easy challenge compared to others like Venus. The Venusian atmosphere is also mostly carbon dioxide but the air pressure at the surface is ninety times that of Earth, like being a thousand meters deep in the ocean. We know that fish and other creatures can exist at those depths, and some whales can dive even deeper for a time—so it’s not inconceivable that our bodies could be adapted for it (maybe even encouraged to grow a hard shell?) But again, we wouldn’t be breathing—air at that pressure is basically a fluid. We’d have to get oxygen and/or energy another way. And Venus is hot—hotter than Mercury—about 460 C at the surface. If there is any part that might be relatively hospitable to humans it would be the upper atmosphere, about fifty kilometers high, where the temperature and pressure are nearly Earth-normal. There are obstacles though: winds over 300 kilometers per hour and clouds full of sulphuric acid!

OK, so maybe Venus-like worlds will be beyond biological adaptations and require either full space suits or at least extensive mechanical adaptations.

Gas giant planets don’t hold much attraction as homes-away-from-home, but many of their moons might. With a tough enough skin and a metabolism that uses chemosynthesis instead of air-breathing, maybe we could survive in a near-vacuum, but it’s hard to imagine that we could ever adapt our bodies to temperatures that can freeze water as hard as granite. On Jupiter’s moon Europa, for example, the temperature at the equator (you know, the beach resort zone) averages about -160 C. Where there is a possibility of survival, however, is under the icy surface in an ocean of water. Someday we may create humans who can function as aquatic creatures, in which case our own planet’s oceans will provide a vast amount of space to explore and inhabit.

There’s a chance that we’ll discover planets elsewhere that are almost identical to Earth and already support life. In that event, our problem will be that some of the life, particularly microorganisms, could be utterly hostile to humans. Deadly germs or bacteria. Then we’ll need to either adapt our immune systems to cope with the pathogens, or adapt our whole bodies to co-exist with the alien organisms (although, to be accurate, we’ll be the aliens).

I haven’t even touched on the whole area of technological enhancements to the human body—turning us into partly-cybernetic organisms, or cyborgs. Maybe in another blog someday. And, of course, there are huge philosophical and ethical questions involved whenever the question of bio-engineered humans is raised. Is it too big a risk? If such genetic engineering had to occur at an early age or even at the fetal stage, could we make such decisions for our children? Most of all, how much can you change someone before they’re no longer human? We don’t mind the idea of fictional superheroes transformed by a radioactive spider bite or gamma radiation—the reality might evoke feelings that are quite different.

For now, I’m content to leave this as an exercise of the imagination, but the time will come when we achieve the capability for such things. I hope we’ll have resolved our questions about it by then.

COULD HUMANS BE ADAPTED TO OTHER PLANETS?

In a recent post I mentioned that there are huge amounts of water elsewhere in the solar system—much more than actually exists on Earth. And when scientists assess the potential of other star systems to host life, the foremost yardstick they use is the presence of water, especially liquid water. Where there’s liquid water, there could be life that we would recognize. So a planet orbiting its sun in the so-called “Goldilocks zone” (not too hot, not too cold) might have liquid water and thus be capable of supporting life. Maybe.

This fairly narrow view isn’t so much based on the idea that we only want to meet aliens that look like us (as in most Star Trek episodes) but more because we want to visit places that will present the fewest obstacles to our survival there. Lots of oxygen in the air would be nice. Clean drinking water. Reasonable weather. Gravity that doesn’t make us feel like we’re wearing lead overcoats.

You’ve probably heard news stories about “earthlike” planets being discovered around other stars. That description usually only means that they’re rocky planets instead of gas giants, and they’re not frozen or roasting hot. That’s it. Everything else about them might be far different from Earth—we just don’t know because those planets are too far away. We do know about the planets in our own solar system, and by the above standards Mars would be considered earthlike, except a little cold. But we certainly can’t live there. At least, not yet.

For humans to survive on another planet—in this solar system or any other—there are three ways to do it. The ways that get the most attention are: 1) building habitats (even domed cities) that will protect us from the planet’s hostile elements and enclose a simulated Earth environment; and 2) change the planet’s entire ecosphere into a close approximation of Earth’s—what is called terraforming. Enclosed habitats will always be very restrictive and costly to expand, while terraforming some place like Mars would take thousands of years.

The third option is to change the human body itself in ways that will adapt us to the alien environment.

On Mars that would require quite a few changes. We know that people can adapt to colder climates (especially over a number of generations) but even Mars’ most hospitable climes would require genetic tweaking to rev up our metabolism, increase blood flow, and grow much thicker layers of insulating fat under our skin. We’d have to grow a tougher skin, too, with closable orifices—even skin pores and tear ducts—to prevent the low air pressure from boiling away our bodily fluids. These things aren’t inconceivable as we get better and better at gene splicing—we’d find organisms with those traits here on Earth (perhaps creatures that live in extreme environments) and splice the necessary genes onto our own genome. Even so, a few more mechanical implants might also be in order, like heating coils in our nostrils to warm our inhaled air!

Mars’ atmosphere is mostly carbon dioxide with very little oxygen, so to avoid the need to carry air with us we’d have to either re-engineer our body cells to use some energy source other than oxygen, or get assistance from something that can make the oxygen we need from CO2. Plant life uses photosynthesis to produce food energy from carbon dioxide and water using sunlight (but it’s slow). Creatures that live around deep-sea volcanic vents use chemosynthesis instead, getting their energy, not from sunlight, but from the oxidation of compounds like hydrogen sulphide gas. Giant tube worms, crabs, clams and others are filled with proteobacteria and archaea—some of the earliest life forms on the planet—which replace their usual digestive tracts of stomach, intestines etc. And we know many kinds of algae and bacteria that can produce oxygen from materials in their environment, including the bacteria Methylomirabilis oxyfera which extracts oxygen from nitrates in the river mud where it lives. Since our bodies already carry around hundreds of types of bacteria that help keep us alive, it’s not a huge stretch to believe that a few additional species might help us exist on other worlds.

Mars would be one of the easier planets for us to adapt to. And, of course, there’s the whole ethical question of whether or not we should tinker with the human body to that extent at all. But that topic will have to wait until my next post. In the meantime you can read some other people’s thoughts about this here, here and here.

FUTURE RX

When we think about how scientific research and technological innovation are changing our world, we can’t help but think of tech progress at the most personal level: within our own bodies. Over the past century, medical knowledge has made huge leaps and there’s no reason to believe that won’t continue. We already have amazing vaccines against some of our race’s most ancient biological enemies, and micro-surgical techniques are constantly improving, turning previously traumatic procedures into outpatient treatments. How long will it be before some obsessive scientist in a castle laboratory shrieks into the howl of a thunderstorm, “It’s alive! It’s alive!”?

OK, but if we haven’t quite figured out how to reverse death (or bring pilfered corpse parts back to life) we’re at least making great strides toward living longer. Even such things as pacemakers and artificial hip joints have had a big impact on life expectancy. I think that within twenty years we’ll all have implants that will monitor our vital signs, sound a warning to ourselves and to bystanders if we suffer a sudden health problem (and probably issue first aid instructions to those nearby) while automatically alerting emergency medical services. Why not? Our cell phones can almost do that now—which is appropriate considering how many people place themselves in life-threatening situations while texting.

Human body parts are being produced by 3D printing. Although it will be some time yet before viable organs are created, it’s thought that such printers might use living cells for “ink”. Various blood substitutes have been around for a while, which can save lives in a pinch, but now labs have begun to create actual artificial blood. Bioengineering will take us a long way in the coming years, making replacement body parts and organs customized to match our own individual DNA. Hopefully researchers will include muscle and bone tissue among these advancements, because none of us really wants to live decades longer if muscle and bone loss means we feel the aches and pains of every one of those extra years. Hello doctors—do I need to repeat that one?

Let’s not forget nanotechnology. As scientists create more and more micro machines that mimic the chemical processes of living cells, we’ll enter the territory of body parts that don’t wear out because they’ll repair themselves. Whereas we now turn to green vegetables, blueberries, and red wine to provide anti-oxidant compounds to clean out the “rust in our pipes” (from free-radicals),

within the next century we’ll have armies of ultra-miniature mechanisms floating through our bloodstreams to perform those tasks, and do it better because their actions will be directed, not random. Just as importantly, our mental capabilities will be maintained through the stimulation of new neuron growth, along with the technical assistance of implanted computer-networked devices (being “wired” will have nothing to do with overdosing on espresso). We now know that young children’s abilities to soak up knowledge like a sponge is chemically switched off as they approach puberty and then adulthood, but within the next century we’ll learn to switch it back on, say, when we want to learn a few new languages for our European vacation.

Our children and their children can look forward to all of these innovations and many more, BUT there will be a price to pay when humans start living longer and longer lives. Population pressure will become even more serious, and the resources of our planet are not infinite. Yes, we’ll find ways to gather some resources from elsewhere in the solar system, but wouldn’t it be much smarter to make better use of the ones that are already here?

It’s all well and good to improve human health and the human lifespan, but it will be irresponsible if we don’t put a serious chunk of that research and innovation brainpower into vastly improved recycling of materials (including wasted food), renewable energy, and the reclaiming of material that has been wantonly discarded in landfill sites for the past hundred-and-fifty years.

There’s more to the equation than just medical advancements if we truly want to “Live long and prosper.”