A MARRIAGE OF MIND AND MACHINE

Billionaire Elon Musk knows how to get attention. Famous for his successful Tesla Inc. motor company (electric cars and the batteries to run them), Solar City (solar power), SpaceX (private space venture) and other companies, he made his first fortune as a co-founder of PayPal. Musk has a brilliant mind and a Midas touch. When he speaks people listen, and most recently he decided to speak about direct interfaces between human brains and electronic computers.

His newest company is called Neuralink, and Musk says it will use a technology in development called neural lace to enable direct connections between our flesh-and-blood brains and the digital world. For decades, researchers have worked to translate electrical signals in the brain, detected by electroencephalograms (EEG) and other methods, to better understand how the mind works, to explore the functioning of our senses, and even to directly control mechanical devices. Such research provides hope for victims of paralysis and degenerative diseases, permitting them to control artificial limbs, for instance, as well as enabling blind people to see, after a fashion. But what if we could do much more? What if our brains could interact seamlessly with computers without the need for physical interfaces like a keyboard, a mouse, or speech-to-text software?

Surf the web with a mere thought. Perform computer-swift calculations of any kind. Steer your car without touching any controls. Thought would instantly become action.

Musk’s announced reasons for starting Neuralink have to do with a project he co-chairs called Open AI which includes a number of other tech billionaires who believe that, while artificial intelligence is one of the greatest threats to the survival of humankind, it’s a genie that can’t be put back into the bottle. So the best way to save ourselves from falling victim to “evil AI” (like Skynet in the Terminator movies) is to develop “friendly AI” first. Now Musk asserts that the ultimate way to thwart the rise of dangerous AI is to beat computers to the punch by augmenting humans with computer intelligence. We will be the AI—combining both human and computer capabilities to outperform pure computer intelligence alone, and maybe halt the drive to produce true AI completely.

The first step is that seamless brain-computer interface. Neuralink’s neural lace is a kind of mesh that is surgically injected into the brain and spreads itself out from there, connecting with brain cells and eventually becoming fully accepted into the flesh neural network. The claim is that it can detect brain activity with much greater accuracy and less “signal noise” than traditional electrodes. It will certainly be interesting to see how well it can be made to work.

A novel manuscript of mine that’s currently under consideration by several publishers is about this very thing: what happens when truly effective brain-computer interfaces become a reality? It’s only a matter of time, and the possibilities are both breathtaking and frightening. Think of all the services your smart phone provides, except available with a mere thought. Imagine person-to-person networking that would make Facebook look like snail mail. But on the negative side comes the fear of mind control by governments, corporations, or hackers who could plant their own information directly into your brain, and possibly even control your body remotely. My novel also explores the potential abuses of marketing in a world of computer-linked minds (giving a whole new meaning to the concept of persuasion).

Musk, and others, believe that linking ourselves directly to computers is the next step in human evolution, and they’re probably right. There are many other teams working on the concept, including a company called Kernel founded by tech entrepreneur Bryan Johnson. I’m grateful that someone with Musk’s intelligence, tempered by a sincere desire for the betterment of humanity, is taking the lead in this field. Because the potential for abuse is enough to make my brain blow a fuse.

THE LONER MYTH IN SF

I haven’t posted a blog in a while because I’ve been in the process of moving from a small town home to an island cabin in a lake in Northern Ontario, Canada. It’s off the grid and as of this writing I still don’t have my solar power system up and running yet, so electricity is rationed!

I don’t think of my new home as all that isolated—I have neighbours and an all-season road just a few kilometers away—but while visiting my kids and their families in Toronto recently, the contrast struck me as pretty extreme. On the one hand, millions of people filling huge tracts of cookie-cutter housing and scores of high-rise condominiums, clogging eight-lane highways and a vast transit network. On the other hand, my wife and I using a snowmobile to get between house and car, and sometimes not seeing another soul for days at a time.

It often makes me think of those post-apocalyptic science fiction stories in which one lone man or woman faces a struggle to survive on their own resources. Stories like Cormac McCarthy’s The Road or Richard Matheson’s I Am Legend—a story of a lone survivor of a biological disaster amid a world of zombies. It’s been filmed numerous times under various names, starring Vincent Price, Charlton Heston, Will Smith and others. Why are such stories so popular? Is it because being left on our own is our greatest fear? Or our secret wish? Do we thrill with horror at the thought of being left to our own devices in a starkly hostile world, or is such a scenario a kind of wish fulfillment when the pressure of our crowded cities begins to get to us?

Scenarios like these aren’t impossible—if the human race is wiped out (absent the complete destruction of the planet) someone will be the last. And I accept it as a good way of telling a narrative that helps the reader fully identify with the protagonist. But such extraordinary solitude is usually anything but deliberate.

There are also space tales of lone humans being stranded on strange planets through accident or misfortune and thrust into a battle for survival. Andy Weir’s The Martian comes to mind. But it’s notable that, while astronaut Mark Watney manages to survive for a time on his own, ultimate safety requires a massive effort involving hundreds of people to bring him home.

That’s realistic. We need others to help us survive.

What I find hard to swallow are the stories that place a single human in space or on another planet as part of a deliberate plan, assigned to carry out some lonely duty. The reason they’re sent alone is rarely given. The Sam Rockwell movie Moon is one such. Yes, he has the ‘companionship’ of an AI, but no living human, and strange experiences ensue. Other SF short stories and novels also feature loner types assigned to some isolated outpost all on their own.

Why?

Why would anyone think that was a good idea?

There are, and maybe always have been, some people who choose to live a solitary life and manage to be self-sufficient—more or less—prospectors, lighthouse keepers, and fur trappers, for instance. But even most of them ultimately depend on others in some way, coming in from the wilderness to trade goods for food and other supplies produced by someone else. And that’s on the planet Earth, rich with sufficient air, water, energy, and food for our needs. Lone spacemen exploring the vast expanses between the stars in one-man ships doesn’t make a lot of sense (much as I love the Beowulf Shaeffer stories of Larry Niven’s Known Space series). The infrastructure required to support several people, or a dozen, isn’t that much greater than what’s required for a single pilot, yet offers so much more productivity, and sheer redundancy in the event of an accident or failure of some kind. And that’s not even considering the mental side-effects of prolonged and extreme solitude.

We’re social creatures—we evolved that way and we reject it only at great risk to our mental and physical health. We need others for company; we need others for the skills and labour they offer beyond our own; and we often need others to bail us out when we get in a jam. (My wife and I live on an island, but we’ve only managed to build our home and maintain it with the generous and all-too-frequent help of many friends and family members.)

So write your adventure yarn about the amazing outcast who braves the uncaring universe all alone. But please give me a darn good reason he or she isn’t doing it with a little help from their friends.

CAN DYSTOPIAN FICTION BECOME FACT? IF WE LET IT

As I write this, Donald Trump is in his second week as President of the United States. White House Press Secretary Sean Spicer has told easily-disproved lies with the boldest of faces. But then, Toronto’s The Star newspaper is now keeping a running list of the false claims Trump himself has made since becoming President. And Trump advisor Kellyanne Conway has cited a “massacre” that never happened as a defense for the travel ban against seven Muslim countries. Along with Conway’s use of the term “alternative facts”, it’s inevitable that people would be reminded of George Orwell’s dystopian novel Nineteen Eighty-Four. No surprise, then, that the 1949 novel has suddenly become a bestseller again, selling out at Amazon and elsewhere.

The totalitarian government of the country Airstrip One that Orwell describes in the novel rules with an iron fist over a mostly uneducated lower class population, and seeks power above all. But the element of the novel that resonates the most this week is Airstrip One’s Ministry of Truth which is, of course, about anything but truth. Its work is to revise history to make it match the party line, to erase troublesome figures and events from news and historical accounts. The Ministry’s “Newspeak” is official language that mostly obscures the truth and encourages “doublethink” requiring citizens to embrace opposing concepts, such as “black is white” (if the government says so). Alternative facts, indeed. The citizens of Airstrip One have no freedom and no privacy—almost all of us are familiar with the famous slogan “Big Brother is Watching You.”

In these days when the National Security Agency in the U.S. has surveillance powers that beggar belief, and even corporations know virtually everything about us and our movements thanks to reward programs, facial recognition, and our ever-present smartphones, the Big Brother concept is barely fiction anymore.

Of course, Nineteen Eighty-Four is only one of the best-known dystopian novels, but others are also disturbingly relevant to current events. Aldous Huxley’s 1932 novel Brave New World describes the year of 632 A.F. (“After Ford”) in which humans are produced in test tubes conforming to a very rigid class structure by genetics. Citizens’ behaviour is controlled through sleep-conditioning. And the masses are pacified by an all-purpose feel-good drug called soma, so that personal freedom can be sacrificed for the cause of social stability. Huxley was pretty familiar with mind-altering drugs, but he didn’t know the distraction value of television, the internet, social media and text messaging. I feel sure he would have recognized all of those as perfect means to keep the general population from looking too deeply into their governments’ actions and motives. Modern-day leaders have certainly embraced the sleight-of-hand techniques that technology offers them to keep the voters’ attention elsewhere.

Ray Bradbury’s Fahrenheit 451 envisioned another totalitarian world in which books are banned and even burned (along with their owners!) in a deliberate attempt to pacify and control the general populace by keeping citizens from thinking for themselves. Orwell also thought such a government would ban books, while Huxley feared people would simply lose interest in reading all on their own (a circumstance that many believe is coming true). Although there’s been no move to ban books in general, many means are being used to diminish the effectiveness of the media that are most people’s main source of information about the state of their own countries. Leaders like Trump (and before him Canada’s past-Prime Minister Stephen Harper) have very combative relationships with the media; they portray members of the media as dishonest; they try to muzzle scientists and administrators (I have to think Trump got the idea from Harper, who did it first); and “false news” sources have sprung up like bad weeds all over the internet. These all have a similar effect to banning books: keeping people uninformed and more apt to believe what they’ve been told by “official sources” (the louder, the better) rather than form their own opinions.

In Margaret Atwood’s The Handmaid’s Tale a fiercely right-wing Christian movement has overthrown the American government and returned all women back to the status of being the property of men. That may seem quite a distance from Trump’s attitude toward women, including his executive order banning any federal money from going to international groups that perform or provide information about abortion. But obviously the many millions of women who marched in protest in the U.S. and all around the world the day after his inauguration don’t think so.

A huge number of dystopian novels feature totalitarian governments, religious and cultural oppression, and the suppression of individual rights. They’re not far-fetched—it has happened in the past. And today’s technology—the omnipresent internet, computer hacking, electronic surveillance techniques, plus the constant distractions of smartphones, social media, and other entertainment—makes the modern world more fertile ground than ever for the rise of such movements. The desire and the means are already in place. All we have to do is to keep ourselves ignorant, apathetic, and distracted, and the rest will take care of itself.

Regimes like that can happen if we allow them to happen.

It’s interesting that novels like The Hunger Games, The Maze Runner, Divergent and others have been among the most popular books read by young adults. You have to wonder how many of the warning signs young readers recognize in the world around them. Far too many of their elders don’t seem to.

DISASTER STORIES: MORE THAN JUST A GUILTY PLEASURE?

I love disaster stories.

I usually explain it by saying that disaster scenarios bring out the best and the worst in humanity, which makes for terrific character-building and storytelling potential. Heroism and sacrifice, but also the self-serving villains we love to hiss and boo at. While fantasy novels let us imagine what it would be like to live in such a world, disaster stories are more than just guilty pleasures: they make us dig deeper, to ask ourselves “What would I do in such a situation?”

That’s my theory. Or maybe I’m just a little twisted. No psychoanalysis, please.

The first SF disaster novel I remember reading was J.G. Ballard’s first novel The Wind From Nowhere. Though he later pretty much disowned it (and it might suck if I were to re-read it now) I was impressed at the time with the image of a world ravaged by an ever-growing wind, and the noble attempts of mere humans to survive it. John Wyndham’s The Day of the Triffids is still one of my all-time favourite books, in which most of humanity is stricken blind and the carnivorous, mobile, and perhaps even intelligent triffid plants gain the upper hand. It’s simply chilling, told in an understated British style. In fact, UK writers seem to have produced many more disaster novels than those from other English-speaking countries. In the US the disaster genre has found its expression more often in the movies (although some, like Michael Crichton’s terrific The Andromeda Strain succeeded on both paper and film). While Larry Niven and Jerry Pournelle combined their talents to tell about a mammoth comet impacting the Earth in the 1977 novel Lucifer’s Hammer, it’s probably not as well known as the two movies with similar plots Deep Impact and Armageddon both released in 1998 (because Hollywood likes to run with themes).

Which brings me to my second point about disaster stories. There’s a sub-genre of science fiction that can be called “cautionary tales” that describe how things can go wrong as a warning to all of us. Brave New World, 1984, and Fahrenheit 451 are classic examples. And disaster stories are cautionaries at full blast. While some plots involve a purely natural threat, like a solar flare-up or a killer rock from space, many others (nuclear melt-downs, deadly plagues, and nanotechnology run riot) point the finger at potential man-made disasters. Not only do they warn us about paths we shouldn’t take with our technology, but also how critically important it is to be prepared for when disaster strikes.

Especially since the 1990’s there have been significant efforts to detect and plot the orbits of Near Earth Objects—things like asteroids and comets in our space neighbourhood that could potentially strike the planet with destructive results. And yes, there’s been serious discussion about how to send a rocket crew out to blast a threatening rock away from its collision course, just like Bruce Willis and the boys. The Spaceguard Foundation based in Italy, the UK’s SpaceGuard Centre, and other projects continue to work in the field, and the White House Office of Science and Technology Policy in the US recently released a National Near-Earth Object Preparedness Strategy from a working group that involved many different federal agencies. It’s the kind of collaborative approach that’s needed to cope with disasters on a national, or even global scale.

Society’s collective mindset is important—we have to believe that a given scenario is plausible before we will think about ways to protect ourselves from it. Science fiction fertilizes that soil. Perhaps we’re more prepared for crises like the 2002-2003 SARS outbreak because of pandemic-themed stories like Richard Matheson’s I Am Legend, Stephen King’s The Stand, or Margaret Atwood’s MaddAddam trilogy. A huge number of nuclear holocaust novels, from Shute’s On The Beach to Frank’s Alas, Babylon to Zelazny’s Damnation Alley help to keep the pressure on world leaders for nuclear disarmament (apparently Donald Trump doesn’t read). Of course, lots of novels and movies about rogue artificial intelligences and nanotechnology run amuck have ensured a very active public discussion about those areas of research and restrictions that should be considered.

Think tanks and government agencies collectively spend millions organizing brainstorming sessions to prepare for potential disasters of every description. Maybe their first step should be to stock up their SF libraries. Yes, I’m being a little facetious, but I’d like to believe that our literature of the imagination has helped to create a mindset that will save many lives in the centuries to come.

Have I written disaster stories myself? Of course! I invite you to read my collection Disastrous! Three Stories of the End of the World available as a free ebook download from my website bookstore or from Kobo. (I made it free on Amazon too, but they put the price back up!)

Enjoy!

A BILLION BLACK HOLES

This photo, recently released by NASA’s Chandra X-ray Observatory, shows black holes in a portion of the sky about two-thirds the diameter of the full moon seen at night. Chandra collected x-ray data from this small patch of sky for the equivalent of two months and then the data was “stacked” to produce the most detailed x-ray astronomy image ever. The photo shows more than one thousand supermassive black holes—the kind thought to exist at the center of galaxies—in just that small patch of sky. If that zone is typical of the rest of the sky, it means there are more than a billion such black holes out there. But before you get too worried, most of the black holes pictured are close to thirteen billion light years from Earth, meaning not only that they’re much too far away to worry about, but also that the image of them we’re seeing is from thirteen billion years in the past. A billion years or less after the Big Bang that produced the universe itself. Who knows what state they’re in now?

Black holes form when stars with at least three times the mass of our sun burn out and collapse in upon themselves. The material packs so densely together that the result is a fantastic amount of mass in a relatively small area, called a singularity, and within a certain distance of that singularity the force of its gravity is so strong that nothing, not even light, can escape it (explaining why it’s black!) That point-of-no-return is called the black hole’s event horizon because nothing can be seen beyond it. But the event horizon is also a zone of intense radiation, and often jets of radioactive particles stream outward from it, which scientists can see in the x-ray spectrum.

The thought of billions of black holes (possibly thousands in our galaxy alone) is rich fodder for the imagination. Think of what could be done with them! Borrowing the ideas of various science fiction writers, what if black holes are:

Shortcuts through space/time—these are called wormholes, but some physicists suggest that you could have a wormhole with black holes, like doorways, at each end. Could we use them to travel to far distant places? Well, somehow we’d have to survive the unthinkable gravity and tidal forces, radiation, and other unknown hazards, plus we’d still have to have incredibly fast spaceships to even get to the nearest black hole in the first place. Otherwise…maybe.

Doorways to another universe—but, if so, how will we ever know? Nothing is powerful enough to come back through one.

Portals for traveling into the past—if you could somehow manipulate black holes at the mouths of wormholes, theoretically you could place one at an earlier location in space/time. But then if we had the engineering ability to move black holes around, we could probably do anything we wanted with space/time anyway.

Means to jump into the future—as in the movie Interstellar, being close to a black hole slows your perception of time. Get close enough to a black hole for a few minutes and decades might have passed in the universe at large. A quick trip to the future, yes, but no way to return to your own time to tell about it.

Weapons—locate and manipulate a small black hole, then use it to eat your enemy’s city, or planet, or solar system. Hmmmm, except a black hole would just as happily gobble you as the bad guys. I also think they’d be kind of hard to sneak past galactic security.

Power sourcesStar Trek’s Romulans use black holes to power their starships. Mind you, using something that can warp space/time is bound to produce some undesirable side effects, not to mention that if the containment field fails the thing will consume your ship like a fistful of nachos on Superbowl Sunday.

Prisons—in a re-visioning of an Arthur C. Clarke novel, Gregory Benford imagined using a black hole as a prison for an immensely powerful and evil intelligence. Something that you can’t destroy any other way? Yup, I guess that would work. Unless the black hole turns out to be a gateway to another universe, another place in your own universe, or another time, in which case you’ve just shifted the problem.

Personally, I’ve sometimes wondered if black holes—the most destructive forces in our universe—spend billions of years gathering matter and energy because, at the right moment, they’ll suddenly explode in a Big Bang that creates a whole new universe in a different dimension—literally the mothers of all space phenomena.

I don’t know what physics would say about that, but it feels rather poetic to me.

HOW MUCH OF THE FUTURE SHOULD WE TRY TO PREDICT?

I’ve mentioned before that I rarely write stories of the distant future. Readers expect authors to include details of that future society, especially the technology. Will we have flying cars? Hotels on Mars? Robot servants? Everlasting bodies? They want to read about that—they want to see it in their minds.

Not only is that stuff hard to predict with any credibility hundreds of years ahead (how many futurists of the early 20th Century predicted the smartphone/online world we experience now, let alone where that path will take us from here?) But if you do it too thoroughly, the reader of today might not even be able to relate to the image you conjure. Why do Star Trek movies continue to show a full bridge crew manipulating physical controls like sliders on touchscreens at exotically-shaped workstations covered with more multi-coloured lights than a Christmas tree? Certainly the technology of the 23rd Century and beyond will make it possible for humans to be little more than passengers along for the ride while artificial intelligences handle all of a spacecraft’s functions. If there’s a reason for the AIs to feed regular data about the ship’s progress and surroundings to the humans, isn’t it more likely to be an immersive virtual reality experience than current-style readouts, blinking lights, and a big TV at the front of the room? And let’s not forget that brain-computer-interfaces are already a reality—if the humans ever do have to take control of something, they’ll just form a thought to “make it so”.

But that would suck on the big screen.

It would amount to a handful of characters sitting in chairs in some nondescript space, maybe with some kind of headset on (but probably not). We might not even recognize them as fully human. As much as our mechanical technology is changing by leaps and bounds, we’ll also very soon have the ability to make significant changes to the human form itself.

Our societies as a whole are fluctuating rapidly, too. Thirty years ago, who would have predicted the way our world has now been shaped by terrorism and our lawmakers' response to it? Or the new emphasis on equal rights for members of the LGBTQ community? Earlier than that, it was racial rights that were in flux. Gender equality still hasn’t been fully resolved, but then questions of gender identity are expanding all the time. Science fiction of recent decades has offered some striking examples of where biological engineering might take human sexuality—the novel 2312 by Kim Stanley Robinson includes some interesting possibilities.

But if we go too far in earnestly trying to describe the bizarre paths the human race could take over the next, say, five hundred years, will the result be as alien as anything that might have evolved on some distant planet? How will we identify with such people? How will they speak to us? The easy answer is to say that such characters will still have an “essential humanity” revealed by the author, but that might be disingenuous. Because we could very well have less in common with these trans-humans of tomorrow than we do with the ancient Sumerians of millennia ago.

There can be benefits in pooling our collective brainpower to predict where scientific developments are taking us, especially in helping us to decide which paths we definitely do not want to take. But our primary purpose as writers is to tell stories—stories that entertain, yes, but also offer instruction, philosophical exploration, and catharsis. To do so they have to touch the core human identity within us. None of that comes across if we can’t relate to the story—if we can’t picture ourselves in it.

So, by all means let’s enjoy creative visions of a far-flung future, but also recognize the practical limitations that fiction for a present-day audience dictates: too much strangeness, even if it’s likely to be accurate, can get in the way. And although it might seem like laziness when an SF writer doesn’t make his or her future world so utterly different from our own, maybe it’s not. Maybe sometimes it’s just good storytelling.

MORE BUILDING BLOCKS OF THE FUTURE

CREDIT University of Central Florida

CREDIT University of Central Florida

In my last post I wrote about some of the ways a bright technological future is already under construction, one development at a time. There are far too many new inventions and discoveries to be covered in a handful of blog posts, but I thought I’d touch on just a few more. You can follow the links to read more details at the magazine NewAtlas.com.

Some of the most exciting new work is being done in the area of energy. Since our ravenous consumption of energy from fossil fuel sources is one of the key reasons our world’s environment is in such a sorry state, every alternative is a step toward heading off even worse damage. Some new developments are potential sources of energy production, like the wafer materials known as ferroelectret nanogenerators such as are being developed at Michigan State University. These FENGs (for short) involve layers of complex materials sandwiched together which produce an electric current when compressed. So, for instance, pressing on a touch screen device might produce the energy to power that screen. Bending and flexing can also produce current, perhaps turning our elbows or knees into potential energy generators. With a FENG folded into a more potent package in the heel of a shoe, creating energy could be a walk in the park!

Thermoelectric materials produce electric current because of temperature differences on either side of the material. Scientists at Korea’s Ulsan National Institute of Science and Technology say they’ve developed a thermoelectric coating that can simply be painted onto objects. So nearly anything that has a warmer inside and a colder outside (or vice versa) could produce energy. Maybe not useful for house paint in northern climates where we like our homes well insulated, but possibly for shelters in more gentle climes. And certainly potentially useful for loads of household gadgets from coffee mugs to crockpots.

With our desire for ever more powerful portable computing devices, designers have explored lots of ways to make our clothing and accessories “smart” with circuitry incorporated into them, but also elegant means to power such devices. University of Central Florida scientists have created a “fabric” that uses threads of very special filaments. A coating on one side of the filament gathers solar energy then passes it over to the other side, which is a superconductor (storing energy like a battery). A combination sweater/smartphone anyone? Although, not surprisingly, the first practical uses for this stuff will probably be in uniforms for the modern soldier, giving them the ability to power a range of portable high-tech hardware without the weight of batteries.

Other developments are fascinating if mainly for their “oh, wow” ingenuity, like the way Irish materials scientist Jonathan Coleman added flakes of graphene (one-atom-thick sheets of carbon atoms) to Silly Putty to produce an electrically conductive material he calls G-putty that’s ridiculously sensitive to pressure impacts of any kind. That could make it the perfect choice for medical sensors and other sensing equipment (and made of Silly Putty!)

Still other innovations could transform our world in ways that might take some time to become clear. A company in the Netherlands has created an alternative to stairs and elevators which they call Vertical Walking. In a near-sitting position, a person uses their arms and core muscles to pull themselves up vertical rails in a series of movements that provide healthful exercise but aren’t much more strenuous than walking, while not requiring the external energy, space, and infrastructure of elevators. I’m not sure it’ll catch on, though it’s an interesting idea.

But I have to say that not all new inventions will necessarily make the world a better place. Speaking as someone who’s still mystified by the appeal of “selfies” and their proliferation along social media, I wasn’t impressed by the appearance of the selfie stick. So I’m also not a fan of the AirSelfie drone—a miniature quadcopter the size and shape of a smartphone designed to offer even more ways to be relentlessly narcissistic. Stored in your smartphone case, powered by and linked to the phone, it flutters smoothly into the air at your command, just far enough to take yet another series of pictures of YOU.

If you think this is the most exciting of the breakthroughs I’ve just mentioned, please, I don’t want to know.

THE FUTURE IS UNDER CONSTRUCTION

The future isn’t something that will suddenly spring upon us ready-made. Whether you grew up on The Jetsons, Star Trek, Futurama, or just got a kick out of the predictions in magazines like Popular Mechanics and Popular Science (flying cars are always just a few years away) you probably wondered what it would be like to fall asleep for decades like Rip Van Winkle and suddenly arrive in that future world. Of course, that’s not the way it happens. The future comes with every passing moment. You’ve already witnessed incredible changes in technology in your lifetime, many of which no one predicted. Yes, a leap ahead ten years would bring a whole range of new gadgets and processes, but the point is, those “next big things” are in development now.

That struck me forcefully this week when I discovered the online magazine New Atlas. Article after article featured new discoveries, pending inventions, and cool gadgets—the future in process. It’s not only fun to read about the incredible ingenuity of human beings, but also to let your imagination run free about what these new creations could bring.

Some of them are potential game changers on a large scale. Like the research at Australia National University on the light-changing properties of certain nanocrystals (a nanometer is a billionth of a meter, and nanotechnology is one of the most promising areas of research around). The reason humans don’t see well at night isn’t that there isn’t any light around, it’s just light at frequencies the human eye can’t detect. Night vision goggles mostly collect infrared light and other frequencies and amplify it. But nanocrystals can be produced that shift the frequency of incoming light, say, from infrared into something in the visual spectrum. So imagine an ultrathin coating on regular eyeglasses or even contact lenses that can make these night-time forms of light visible for us. Suddenly there’s no more need for glaring, energy-sucking streetlamps that turn cities into gargantuan floodlights and banish the night sky. Usage of every kind of artificial light could be reduced. Not to mention the aesthetic and artistic possibilities of seeing our surroundings in whole new ways.

Sticking with crystals for a moment, some other Australian researchers at the University of New South Wales are working to refine a form of solar power crystals called perovskite. Perovskite was discovered about seven years ago, and along with its ability to convert sunlight into energy, it can be made with different chemical compositions to produce distinct properties. Among other things, it can be manufactured in various colours or completely transparent, and can be sprayed on in layers. So you could paint your car, or almost any other object, and the whole thing would become one big solar panel. Issues of durability and efficiency are being worked out, but someday perhaps every structure of an entire city could be put to use providing free and abundant energy. A bright future indeed.

One of the big problems humanity has to deal with is all of the waste products we produce, everything from nuclear waste to raw sewage. On the nuclear front, scientists at the University of Bristol, in England, have developed a way to make good use of the carbon from graphite blocks that have been used for decades to control nuclear reactions in UK generating plants. The graphite ends up mildly radioactive, but rather than find ways to dispose of it these scientists put it under pressure and heat and turn it into man-made diamonds. The diamonds aren’t for decoration—the radioactivity in them reacts with the diamond structure to produce an electric current, and suddenly you’ve got a diamond that’s a battery. A non-radioactive diamond coating makes the battery safe to handle, and it’s thought that these diamonds could still be producing half of their original energy output nearly six thousand years from now! Put that in your pipe and smoke it, Energizer bunny!

But pressure and heat can help transform another waste product, too. It was high pressure and heat that, over eons of time, turned sludgy sea bottoms into crude oil. In a copycat process, a team from the US Department of Energy's Pacific Northwest National Laboratory has learned how to turn raw sewage into biocrude: an oil-like sludge that can be processed the same way as other forms of petroleum from the ground, including into gasoline and other fuels. Considering that U.S cities are calculated to produce 128 billion litres of raw sewage every day, a process like this could be a tremendous boon to both the production of energy and the reduction of pollution.

Obviously, all of these discoveries are still in the refinement stage and will need to be scaled up considerably before they make a major mark on our world, but they are the future, right before our eyes. And, even more importantly, a hopeful future.

I’ll take a look at more of these new developments in a future post.

GENE EDITING--IT'S TIME TO MAKE SOME DECISIONS

We now know that almost every characteristic of our human bodies, from our appearance to our athletic abilities to many of the diseases we’re prone to, is largely determined by our genes—our DNA (and related molecules). Even before we knew that, we were able to breed desirable traits into our livestock and agricultural crops and some of us wondered whether doing the same thing with humans would be a good idea. So what if we could just take a pair of scissors and some Scotch tape to someone’s genome and, with a snip here and a careful patch there, cure their cancer? An enzyme technology known as CRISPR/Cas9 may offer something very close.

That was one of the big science news stories of the past week. Scientists in China have begun clinical trials in humans using CRISPR to treat cancer patients by “editing” their genes. There’s a kind of loophole in our immune system that cancer takes advantage of—closing that loophole should help our bodies prevent the growth of cancer more efficiently, and that can be done by altering genes in a certain type of immune system cell. So far, so good, right?

The scissors analogy for CRISPR is a good one—researchers chemically break a strand of cellular DNA in a desired spot, perhaps remove some pieces, then allow the DNA to come back together again. It’s also possible to splice a patch of new laboratory-made DNA into the break. Since DNA is a critical part of the instructions that tell our cells to do what they do, gene editing changes the behaviour of the cell and its components. That’s the whole point.

Although the genes of the human body have been mapped, we still have a huge amount to learn about which genes are responsible for which human characteristics, exactly how they produce the effect, and what the implications will be if we make changes. The long-term side effects are especially hard to predict—we can’t know until we try it, which means experimenting on humans.

This prospect might fill you with horror or with wonder. It might conjure up images of Frankenstein or of beautiful, nearly-immortal super humans. As is the case with almost every technology, it will be up to us to decide how much of it is a good thing, and which directions we don’t want to take it. A method similar to CRISPR has already been used to cure a girl of leukemia, and it may soon be used to battle muscular dystrophy, HIV, and retinitis pigmentosa (a major cause of blindness). Certainly curing cancer sounds like a tremendous benefit. Many other hereditary health conditions are potential targets for gene editing. But what if curing diseases isn’t enough? What if it’s used to help women (or men) stay as slim as a supermodel? Or to produce champion swimmers with webbed toes? Or to enhance a child’s language skills at the expense of their math abilities? I especially believe (and fear) that gene-editing will at some point be used to alter our bodies into whatever body image is currently in fashion. Let’s face it, we live in a consumer society. Eventually, the characteristics of our own bodies will become a “product” for which we’ll be able to pay. And the prospect of changing our bodies at will opens up a huge number of potential ways we could be manipulated and exploited by governments, corporations, or both.

I’m not a fear monger—gene editing probably has just as much potential for good as for bad. My point is something I’ve said before: all of us have a responsibility to stay informed and to speak out about how powerful technologies are used. One thing we can’t do is to put the genie back in the bottle. That never works. Gene editing is here to stay. But let’s be proactive and say, “Wow, where can we go with this?” Instead of, “OMG! Where did that come from?” Let’s get ahead of developments and work out the rules our society wants researchers to follow, instead of just reacting after the fact.

To learn more, here’s a good interview with prominent CRISPR researcher Jennifer Doudna.

WHY DO WE WANT TO BELIEVE IN ALIENS?

Do you believe in UFOs? Little green men? The flying saucer crash at Roswell?

You scoff and say, “Hallucinations! Mass hysteria! Cheap drugs!”

Even if you do believe, you probably don’t admit it to just anyone, content to watch reruns of The X-Files in private. Yet it’s perfectly acceptable to be a supporter of the SETI project—the Search for Extraterrestrial Intelligence—in hopes that scientists will discover irrefutable signs of alien life elsewhere in the galaxy with intelligence like our own or greater. I can’t say why one belief is more creditable than the other, but the bigger question is: why do we humans feel such a strong need to believe that there is other intelligent life in the universe? Are we so disenchanted with our billions of fellow Earth dwellers that we hope beings from elsewhere will be better company? (Don’t get me started on the subject of rush hour drivers.)

The concept of non-human intelligent beings probably goes back to the beginnings of our own consciousness. Gods, demi-gods, angels and demons, plus any number of supernatural entities have populated human thought since the earliest of times. Sightings of Unidentified Flying Objects have been recorded for thousands of years too, including an account of “fiery discs” in the sky over Egypt in 1440 BC, a molten silver object shaped like a wine jar that descended into the middle of an ancient Roman battle, and shields that spat fire andswooped over the army of Alexander the Great. Long before Roswell came stories of a chaotic battle of multi-coloured discs and globes in the skies over Nuremberg, Germany in 1561, and something similar over Basel, Switzerland a few years later, with both events depicted in woodcuttings. There were reports of alien spaceship crashes and attempted abductions as early as the 1890’s. I’m not sure about the first accounts of people being “probed” by aliens—they sound more like stories concocted to keep teenagers away from Lovers Lane. But UFO reports were so numerous in the U.S. in the mid-20th century that the American government felt compelled to order its military to investigate, most notably with the U.S. Air Force’s Project Blue Book from 1952 – 1968 (which concluded that there was no evidence UFOs were extraterrestrial vehicles—but what do they know?)

It’s probably safe to say that the very first self-aware ancestors of ours looked up at the night sky and wondered if those sparkling points of light were alive. As the idea gained acceptance that the stars were actually other suns like ours, we were compelled to wonder if those suns also had planets, and if those planets had borne children. If they had, and if those children happened to be older and smarter than us, would they someday come to visit? Was it inevitable that they would?

We have to remember that the belief in otherworldly beings far pre-dates any scientific support. It’s only in recent years that our space telescopes and other instruments have produced solid evidence that other stars do have planets, and although some of the planets appear to be close enough to their suns to support the kind of life we’d recognize, there’s no data to confirm that such life exists. Worse, in spite of decades of dedicated searching, there’s been no sign of advanced civilization anywhere beyond the Earth—no froth of radio noise, no TV shows, no electromagnetic shouts of “Is anybody out there?”

Why do we still believe? Why did we ever believe?

Maybe it’s because we just want new friends. We are social animals, after all—refreshing new company might be nice. Or maybe it’s our species’ burning curiosity—we have hopes that an older, more advanced culture might have the answers to questions of science, medicine, and philosophy that have so far eluded us. Perhaps even the meaning of life itself! It could also be that some inner part of us recognizes the need for a mentor—a parent or teacher figure—who can lead us past the pitfalls and blind alleys as we make our way out into the universe. Or it could simply be that, in the same way we can’t truly comprehend non-existence (like death with no afterlife), neither can we comprehend a whole vast universe with no other beings like us.

Science fiction writers thrive on “what if” scenarios: imagining the possible consequences of different histories, geographies, social structures, and technological developments. Real alien species would provide rich fuel for all that inquisitiveness. But the truth is, it would just be so damn cool to meet an actual alien from another planet, green-skinned or not.

Just as long as they leave their probes at home.